This dataset contains 533 nonregistered Multispectral Images (MSI) with its respective ground truth for evaluation training stage). OMSIV.mat is a struct Matlab variable, it is organized as follow:
rgb | rgbn | name | rgb_imgs | rgbI_imgs | nir_imgs
------------|----------|------------|---------------|---------------|------------
256x256x3 |256x256x4 |images name |256x256x3 uint8|256x256x4 uint8| 256x256
---------------------------------------------------------------------------------
There are 533 rows. The data type of each columns is double if it is not specified
- Last OMSIV update
omsiv folder details
omsiv
'-> h5 [RGB size=(360,640,3), RGBN size=(360,640,4)]
'-> rgb (532 RGB raw images)
'-> rgbn (532 RGB-NIR raw images)
'-> raw [RGB size=(720,1280), RGBN size=(720,1280)]
'-> rgb (532 RGB raw images)
'-> rgbn (532 RGB-NIR raw images)
'-> registered [RGB size=(320,580,3), RGBN size=(320,580,4)]
'-> rgbr (500 registered RGB raw images)
'-> rgbnc (500 cutted RGB-NIR raw images)
'-> restorations [RGB size=(320,580,3), RGBN size=(320,580,4)]
'-> train
'-> X (400 RGB-NIR corrupted images)
'-> Y (400 RGB target images)
'-> train_list.txt (path list of 400 images :: X/RGBNC_001.h5 Y/RGBR_001.h5...)
'-> test
'-> X (100 RGB-NIR corrupted images)
'-> Y (100 RGB target images)
'-> Yhat (100 ~RGB images predicted by color_restorer:https://github.com/xavysp/color_restorer)
'-> test_list.txt (path list of 100 images)
'-> X/RGBNC_001.h5 Y/RGBR_001.h5
'-> .
'-> .. till 100
omsiv4colorization
'->train
'-> X (400 RGB-NIR corrupted images)
'-> Y (400 RGB target images)
'-> test
'-> X (100 RGB-NIR corrupted images)
'-> Y (100 RGB target images)
'-> train_list.lst (path list of 400 images :: train/X/RGBR_001.jpg train/Y/NIR_001.png...)
'-> test_list.lst (path list of 100 images :: test/X/RGBR_002.jpg test/Y/NIR_002.png...)
OMSINV.mat is a Matlab struct variable. It has 61 multispectral images with its respective RGB ground truth images. This variable is composed as follow:
rgb | rgbn | name | rgb_imgs | rgbI_imgs | nir_imgs
------------|----------|------------|---------------|---------------|------------
256x256x3 |256x256x4 |images name |256x256x3 uint8|256x256x4 uint8| 256x256
---------------------------------------------------------------------------------
Thera are 61 rows. The data type of each columns is double if it is not specified
The SSOMSI.mat matlab struct variable contains 150 MSI. It is composed by RGB with NIR influence and its respective RGB ground truth images. The variable is organized as follow:
rgb | rgbn | name | rgb_imgs | rgbI_imgs | nir_imgs
------------|----------|------------|---------------|---------------|------------
256x256x3 |256x256x4 |images name |256x256x3 uint8|256x256x4 uint8| 256x256
---------------------------------------------------------------------------------
Thera are 150 rows. The data type of each columns is double if it is not specified
The entirely dataset (SSMID) can be downloaded from: Click here to download
Its parts can be downloaded individually bellow:
We would appreciate if you cite our work when using the dataset:
@INPROCEEDINGS{soria2017rgb-nirDataset,
author={X. Soria and A. D. Sappa and A. Akbarinia},
booktitle={2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA)},
title={Multispectral single-sensor RGB-NIR imaging: New challenges and opportunities},
year={2017},
pages={1-6},
keywords={Artificial neural networks;Cameras;Image color analysis;Image restoration;Sensitivity;Vegetation mapping;Color restoration;Multispectral images;Neural networks;RGB-NIR dataset;Single-sensor cameras},
doi={10.1109/IPTA.2017.8310105},
ISSN={2154-512X },
month={Nov},
organization={IEEE}}
For any question please Click here to contact us.
To open a RAW image you can find helps on this repository “as well as for dataset visualization”.